Automatic sense prediction for implicit discourse relations in text
نویسندگان
چکیده
We present a series of experiments on automatically identifying the sense of implicit discourse relations, i.e. relations that are not marked with a discourse connective such as “but” or “because”. We work with a corpus of implicit relations present in newspaper text and report results on a test set that is representative of the naturally occurring distribution of senses. We use several linguistically informed features, including polarity tags, Levin verb classes, length of verb phrases, modality, context, and lexical features. In addition, we revisit past approaches using lexical pairs from unannotated text as features, explain some of their shortcomings and propose modifications. Our best combination of features outperforms the baseline from data intensive approaches by 4% for comparison and 16% for contingency.
منابع مشابه
Using entity features to classify implicit discourse relations
We report results on predicting the sense of implicit discourse relations between adjacent sentences in text. Our investigation concentrates on the association between discourse relations and properties of the referring expressions that appear in the related sentences. The properties of interest include coreference information, grammatical role, information status and syntactic form of referrin...
متن کاملCan neighboring relations help to anticipate upcoming discourse relations?
Discourse relations between text segments can be explicitly marked using discourse connectors (e.g., because), but by far not all discourse relations are marked explicitly. However, people are usually able to infer the intended relation. What kinds of cues do people rely on? Could they in principle use structural cues from the preceding discourse to anticipate upcoming discourse relations? This...
متن کاملPredicting Implicit Discourse Relation with Multi-view Modeling and Effective Representation Learning
Discourse relations between two text segments play an important role in many natural language processing (NLP) tasks. The connectives strongly indicate the sense of discourse relations, while in fact, there are no connectives in a large proportion of discourse relations, i.e., implicit discourse relations. The key for implicit relation prediction is to correctly model the semantics of the two d...
متن کاملCrosslingual Annotation and Analysis of Implicit Discourse Connectives for Machine Translation
Usage of discourse connectives (DCs) differs across languages, thus addition and omission of connectives are common in translation. We investigate how implicit (omitted) DCs in the source text impacts various machine translation (MT) systems, and whether a discourse parser is needed as a preprocessor to explicitate implicit DCs. Based on the manual annotation and alignment of 7266 pairs of disc...
متن کاملEasily Identifiable Discourse Relations
We present a corpus study of local discourse relations based on the Penn Discourse Tree Bank, a large manually annotated corpus of explicitly or implicitly realized relations. We show that while there is a large degree of ambiguity in temporal explicit discourse connectives, overall connectives are mostly unambiguous and allow high-accuracy prediction of discourse relation type. We achieve 93.0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009